Poker Hand Combinations Probability

/ Comments off
Poker Hand Combinations Probability Rating: 7,0/10 4684 reviews

We can use permutations and combinations to help us answer more complex probability questions

  1. Poker Hand Combinations Probability Table
  2. Poker Hand Combinations Probability Calculator
  3. Poker Hand Combinations Probability Formula

Thus we use combinations to compute the possible number of 5-card hands, 52 C 5. This number will go in the denominator of our probability formula, since it is the number of possible outcomes. For the numerator, we need the number of ways to draw one Ace and four other cards (none of them Aces) from the deck. Thus, the number of high card hands is 1,499(16,384 - 844)=23,294,460. If we sum the preceding numbers, we obtain 133,784,560 and we can be confident the numbers are correct. Here is a table summarizing the number of 7-card poker hands. The probability is the probability of having the hand dealt to you when dealt 7 cards.

The answer is 52.51, or 2,652. Carry this out to three-card poker: 52.51.50=132,600. With four cards, you could see 6,497,400 potential hands. Finally, we get to five-card poker. Probability of being dealt a certain starting hand There are a total of exactly 1,326 different starting hand combinations in Texas Hold’em poker. However, many of them are practically identical, e.g. A♥K♣ is exactly the same hand as A♦K♠ before the flop. The Probability of drawing a given hand is calculated by dividing the number of ways of drawing the hand (Frequency) by the total number of 5-card hands (the sample space; =, ). For example, there are 4 different ways to draw a royal flush (one for each suit), so the probability is 4 / 2,598,960, or one in 649,740.

Example 1

Poker Hand Combinations Probability Table

A 4 digit PIN is selected. What is the probability that there are no repeated digits?

There are 10 possible values for each digit of the PIN (namely: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), so there are 10 × 10 × 10 × 10 = 10
4 = 10000 total possible PINs.

To have no repeated digits, all four digits would have to be different, which is selecting without replacement. We could either compute 10 × 9 × 8 × 7, or notice that this is the same as the permutation
10P4 = 5040.

The probability of no repeated digits is the number of 4 digit PINs with no repeated digits divided by the total number of 4 digit PINs. This probability is

[latex]displaystylefrac{{{}_{{10}}{P}_{{4}}}}{{{10}^{{4}}}}=frac{{5040}}{{10000}}={0.504}[/latex]

Example 2

Poker hand combinations probability formula

In a certain state’s lottery, 48 balls numbered 1 through 48 are placed in a machine and six of them are drawn at random. If the six numbers drawn match the numbers that a player had chosen, the player wins $1,000,000. In this lottery, the order the numbers are drawn in doesn’t matter. Compute the probability that you win the million-dollar prize if you purchase a single lottery ticket.

In order to compute the probability, we need to count the total number of ways six numbers can be drawn, and the number of ways the six numbers on the player’s ticket could match the six numbers drawn from the machine. Since there is no stipulation that the numbers be in any particular order, the number of possible outcomes of the lottery drawing is
48C6 = 12,271,512. Of these possible outcomes, only one would match all six numbers on the player’s ticket, so the probability of winning the grand prize is:

[latex]displaystylefrac{{{}_{{6}}{C}_{{6}}}}{{{}_{{48}}{C}_{{6}}}}=frac{{1}}{{12271512}}approx={0.0000000815}[/latex]

Poker

Example 3

In the state lottery from the previous example, if five of the six numbers drawn match the numbers that a player has chosen, the player wins a second prize of $1,000. Compute the probability that you win the second prize if you purchase a single lottery ticket.

As above, the number of possible outcomes of the lottery drawing is
48C6 = 12,271,512. In order to win the second prize, five of the six numbers on the ticket must match five of the six winning numbers; in other words, we must have chosen five of the six winning numbers and one of the 42 losing numbers. The number of ways to choose 5 out of the 6 winning numbers is given by 6C5 = 6 and the number of ways to choose 1 out of the 42 losing numbers is given by 42C1 = 42. Thus the number of favorable outcomes is then given by the Basic Counting Rule: 6C5 × 42C1 = 6 × 42 = 252. So the probability of winning the second prize is

[latex]displaystylefrac{{{left({}_{{6}}{C}_{{5}}right)}{left({}_{{42}}{C}_{{1}}right)}}}{{{}_{{48}}{C}_{{6}}}}=frac{{252}}{{12271512}}approx{0.0000205}[/latex]

Try it Now 1

A multiple-choice question on an economics quiz contains 10 questions with five possible answers each. Compute the probability of randomly guessing the answers and getting exactly 9 questions correct.

Poker Hand Combinations Probability Calculator

Example 4

Compute the probability of randomly drawing five cards from a deck and getting exactly one Ace.

Poker Hand Combinations Probability

In many card games (such as poker) the order in which the cards are drawn is not important (since the player may rearrange the cards in his hand any way he chooses); in the problems that follow, we will assume that this is the case unless otherwise stated. Thus we use combinations to compute the possible number of 5-card hands,
52C5. This number will go in the denominator of our probability formula, since it is the number of possible outcomes.

For the numerator, we need the number of ways to draw one Ace and four other cards (none of them Aces) from the deck. Since there are four Aces and we want exactly one of them, there will be
4C1 ways to select one Ace; since there are 48 non-Aces and we want 4 of them, there will be 48C4 ways to select the four non-Aces. Now we use the Basic Counting Rule to calculate that there will be 4C1 × 48C4 ways to choose one ace and four non-Aces.

Putting this all together, we have

[latex]displaystyle{P}{left(text{one Ace}right)}=frac{{{left({}_{{4}}{C}_{{1}}right)}{left({}_{{48}}{C}_{{4}}right)}}}{{{}_{{52}}{C}_{{5}}}}=frac{{778320}}{{2598960}}approx{0.299}[/latex]

Example 5

Compute the probability of randomly drawing five cards from a deck and getting exactly two Aces.

The solution is similar to the previous example, except now we are choosing 2 Aces out of 4 and 3 non-Aces out of 48; the denominator remains the same:

It is useful to note that these card problems are remarkably similar to the lottery problems discussed earlier.

Try it Now 2

Compute the probability of randomly drawing five cards from a deck of cards and getting three Aces and two Kings.

Poker Hand Combinations Probability

Birthday Problem

Let’s take a pause to consider a famous problem in probability theory:

Suppose you have a room full of 30 people. What is the probability that there is at least one shared birthday?

Take a guess at the answer to the above problem. Was your guess fairly low, like around 10%? That seems to be the intuitive answer (30/365, perhaps?). Let’s see if we should listen to our intuition. Let’s start with a simpler problem, however.

Example 6

Suppose three people are in a room. What is the probability that there is at least one shared birthday among these three people?

There are a lot of ways there could be at least one shared birthday. Fortunately there is an easier way. We ask ourselves “What is the alternative to having at least one shared birthday?” In this case, the alternative is that there are
no shared birthdays. In other words, the alternative to “at least one” is having none. In other words, since this is a complementary event,

P(at least one) = 1 – P(none)

We will start, then, by computing the probability that there is no shared birthday. Let’s imagine that you are one of these three people. Your birthday can be anything without conflict, so there are 365 choices out of 365 for your birthday. What is the probability that the second person does not share your birthday? There are 365 days in the year (let’s ignore leap years) and removing your birthday from contention, there are 364 choices that will guarantee that you do not share a birthday with this person, so the probability that the second person does not share your birthday is 364/365. Now we move to the third person. What is the probability that this third person does not have the same birthday as either you or the second person? There are 363 days that will not duplicate your birthday or the second person’s, so the probability that the third person does not share a birthday with the first two is 363/365.

We want the second person not to share a birthday with you
and the third person not to share a birthday with the first two people, so we use the multiplication rule:

[latex]displaystyle{P}{left(text{no shared birthday}right)}=frac{{365}}{{365}}cdotfrac{{364}}{{365}}cdotfrac{{363}}{{365}}approx{0.9918}[/latex]

and then subtract from 1 to get

P(shared birthday) = 1 – P(no shared birthday) = 1 – 0.9918 = 0.0082.

This is a pretty small number, so maybe it makes sense that the answer to our original problem will be small. Let’s make our group a bit bigger.

Example 7

Suppose five people are in a room. What is the probability that there is at least one shared birthday among these five people?

Continuing the pattern of the previous example, the answer should be

[latex]displaystyle{P}{left(text{shared birthday}right)}={1}-frac{{365}}{{365}}cdotfrac{{364}}{{365}}cdotfrac{{363}}{{365}}cdotfrac{{362}}{{365}}cdotfrac{{361}}{{365}}approx{0.0271}[/latex]

Note that we could rewrite this more compactly as

[latex]displaystyle{P}{left(text{shared birthday}right)}={1}-frac{{{}_{{365}}{P}_{{5}}}}{{365}^{{5}}}approx{0.0271}[/latex]

which makes it a bit easier to type into a calculator or computer, and which suggests a nice formula as we continue to expand the population of our group.

Example 8

Suppose 30 people are in a room. What is the probability that there is at least one shared birthday among these 30 people?

Here we can calculate

[latex]displaystyle{P}{left(text{shared birthday}right)}={1}-frac{{{}_{{365}}{P}_{{30}}}}{{365}^{{30}}}approx{0.706}[/latex]

which gives us the surprising result that when you are in a room with 30 people there is a 70% chance that there will be at least one shared birthday!

If you like to bet, and if you can convince 30 people to reveal their birthdays, you might be able to win some money by betting a friend that there will be at least two people with the same birthday in the room anytime you are in a room of 30 or more people. (Of course, you would need to make sure your friend hasn’t studied probability!) You wouldn’t be guaranteed to win, but you should win more than half the time.

This is one of many results in probability theory that is counterintuitive; that is, it goes against our gut instincts. If you still don’t believe the math, you can carry out a simulation. Just so you won’t have to go around rounding up groups of 30 people, someone has kindly developed a Java applet so that you can conduct a computer simulation. Go to this web page:
http://www-stat.stanford.edu/~susan/surprise/Birthday.html, and once the applet has loaded, select 30 birthdays and then keep clicking Start and Reset. If you keep track of the number of times that there is a repeated birthday, you should get a repeated birthday about 7 out of every 10 times you run the simulation.

Try it Now 3

Suppose 10 people are in a room. What is the probability that there is at least one shared birthday among these 10 people?

  1. [latex]displaystyle{P}{left({9} text{ answers correct}right)}=frac{9cdot4}{(5^{10})}approx0.0000037[/latex] chance
  2. [latex]displaystyle{P}{left(text{three Aces and two Kings}right)}=frac{{{left({}_{{4}}{C}_{{3}}right)}{left({}_{{4}}{C}_{{2}}right)}}}{{{}_{{52}}{C}_{{5}}}}=frac{{24}}{{2598960}}approx{0.0000092}[/latex]
  3. [latex]displaystyle{P}{left(text{shared birthday}right)}={1}-frac{{{}_{{365}}{P}_{{10}}}}{{365}^{{10}}}approx{0.117}[/latex]

David Lippman, Math in Society, “Probability,” licensed under a CC BY-SA 3.0 license.

POKER PROBABILITIES

  • Texas Hold'em Poker
    Texas Hold'em Poker probabilities
  • Omaha Poker
    Omaha Poker probabilities
  • 5 Card Poker
    5 Card Poker probabilities

POKER CALCULATOR

  • Poker calculator
    Poker odds calculator

POKER INFORMATION

  • Poker hand rankings
    Ranking of poker hands

In poker, the probability of each type of 5-card hand can be computed by calculating the proportion of hands of that type among all possible hands.

Frequency of 5-card poker hands

The following enumerates the (absolute) frequency of each hand, given all combinations of 5 cards randomly drawn from a full deck of 52 without replacement. Wild cards are not considered. The probability of drawing a given hand is calculated by dividing the number of ways of drawing the hand by the total number of 5-card hands (the sample space, five-card hands). The odds are defined as the ratio (1/p) - 1 : 1, where p is the probability. Note that the cumulative column contains the probability of being dealt that hand or any of the hands ranked higher than it. (The frequencies given are exact; the probabilities and odds are approximate.)

The nCr function on most scientific calculators can be used to calculate hand frequencies; entering ​nCr​ with ​52​ and ​5​, for example, yields as above.

HandFrequencyApprox. ProbabilityApprox. CumulativeApprox. OddsMathematical expression of absolute frequency
Royal flush40.000154%0.000154%649,739 : 1
Straight flush (excluding royal flush)360.00139%0.00154%72,192.33 : 1
Four of a kind6240.0240%0.0256%4,164 : 1
Full house3,7440.144%0.170%693.2 : 1
Flush (excluding royal flush and straight flush)5,1080.197%0.367%507.8 : 1
Straight (excluding royal flush and straight flush)10,2000.392%0.76%253.8 : 1
Three of a kind54,9122.11%2.87%46.3 : 1
Two pair123,5524.75%7.62%20.03 : 1
One pair1,098,24042.3%49.9%1.36 : 1
No pair / High card1,302,54050.1%100%.995 : 1
Total2,598,960100%100%1 : 1

The royal flush is a case of the straight flush. It can be formed 4 ways (one for each suit), giving it a probability of 0.000154% and odds of 649,739 : 1.

When ace-low straights and ace-low straight flushes are not counted, the probabilities of each are reduced: straights and straight flushes each become 9/10 as common as they otherwise would be. The 4 missed straight flushes become flushes and the 1,020 missed straights become no pair.

Note that since suits have no relative value in poker, two hands can be considered identical if one hand can be transformed into the other by swapping suits. For example, the hand 3♣ 7♣ 8♣ Q♠ A♠ is identical to 3♦ 7♦ 8♦ Q♥ A♥ because replacing all of the clubs in the first hand with diamonds and all of the spades with hearts produces the second hand. So eliminating identical hands that ignore relative suit values, there are only 134,459 distinct hands.

The number of distinct poker hands is even smaller. For example, 3♣ 7♣ 8♣ Q♠ A♠ and 3♦ 7♣ 8♦ Q♥ A♥ are not identical hands when just ignoring suit assignments because one hand has three suits, while the other hand has only two—that difference could affect the relative value of each hand when there are more cards to come. However, even though the hands are not identical from that perspective, they still form equivalent poker hands because each hand is an A-Q-8-7-3 high card hand. There are 7,462 distinct poker hands.

Derivation of frequencies of 5-card poker hands

of the binomial coefficients and their interpretation as the number of ways of choosing elements from a given set. See also: sample space and event (probability theory).

  • Straight flush — Each straight flush is uniquely determined by its highest ranking card; and these ranks go from 5 (A-2-3-4-5) up to A (10-J-Q-K-A) in each of the 4 suits. Thus, the total number of straight flushes is:
    • Royal straight flush — A royal straight flush is a subset of all straight flushes in which the ace is the highest card (ie 10-J-Q-K-A in any of the four suits). Thus, the total number of royal straight flushes is
      or simply . Note: this means that the total number of non-Royal straight flushes is 36.
  • Four of a kind — Any one of the thirteen ranks can form the four of a kind by selecting all four of the suits in that rank. The final card can have any one of the twelve remaining ranks, and any suit. Thus, the total number of four-of-a-kinds is:
  • Full house — The full house comprises a triple (three of a kind) and a pair. The triple can be any one of the thirteen ranks, and consists of three of the four suits. The pair can be any one of the remaining twelve ranks, and consists of two of the four suits. Thus, the total number of full houses is:
  • Flush — The flush contains any five of the thirteen ranks, all of which belong to one of the four suits, minus the 40 straight flushes. Thus, the total number of flushes is:
Poker Hand Combinations Probability
  • Straight — The straight consists of any one of the ten possible sequences of five consecutive cards, from 5-4-3-2-A to A-K-Q-J-10. Each of these five cards can have any one of the four suits. Finally, as with the flush, the 40 straight flushes must be excluded, giving:
  • Three of a kind — Any of the thirteen ranks can form the three of a kind, which can contain any three of the four suits. The remaining two cards can have any two of the remaining twelve ranks, and each can have any of the four suits. Thus, the total number of three-of-a-kinds is:
  • Two pair — The pairs can have any two of the thirteen ranks, and each pair can have two of the four suits. The final card can have any one of the eleven remaining ranks, and any suit. Thus, the total number of two-pairs is:
  • Pair — The pair can have any one of the thirteen ranks, and any two of the four suits. The remaining three cards can have any three of the remaining twelve ranks, and each can have any of the four suits. Thus, the total number of pair hands is:
  • No pair — A no-pair hand contains five of the thirteen ranks, discounting the ten possible straights, and each card can have any of the four suits, discounting the four possible flushes. Alternatively, a no-pair hand is any hand that does not fall into one of the above categories; that is, any way to choose five out of 52 cards, discounting all of the above hands. Thus, the total number of no-pair hands is:

Poker Hand Combinations Probability Formula

  • Any five card poker hand — The total number of five card hands that can be drawn from a deck of cards is found using a combination selecting five cards, in any order where n refers to the number of items that can be selected and r to the sample size; the '!' is the factorial operator:

This guide is licensed under the GNU Free Documentation License. It uses material from the Wikipedia.

Home > 5 Card Poker probabilities