Pyqt Connect Signals And Slots

/ Comments off
Pyqt Connect Signals And Slots Rating: 6,2/10 9539 reviews

Slots and signals must have same parameters. Otherwise, the connection will not occur. Not only for connection, slot function must have same parameters with signal. For example, this sample doesn’t work: QObject::connect(ui.comboBox, SIGNAL (activated(int)), this, SLOT (onComboboxActivated)); But it works. QObject.connect(b2, SIGNAL('clicked'), b2clicked) Widgets used to build the GUI interface act as the source of such events. Each PyQt widget, which is derived from QObject class, is designed to emit signal in response to one or more events. The signal on its own does not perform any action. Instead, it is connected to a slot. Each signal can connect to an arbitrary amount of slot functions. Disconnect Often you want to disconnect a slot from its signal to control whether the slot function should still be executed when the signal is triggered. You can either pass the specific slot function or nothing, in which case all slots for the signal will be disconnected.

This section describes the new style of connecting signals and slotsintroduced in PyQt v4.5.

One of the key features of Qt is its use of signals and slots to communicatebetween objects. Their use encourages the development of reusable components.

A signal is emitted when something of potential interest happens. A slot is aPython callable. If a signal is connected to a slot then the slot is calledwhen the signal is emitted. If a signal isn’t connected then nothing happens.The code (or component) that emits the signal does not know or care if thesignal is being used.

The signal/slot mechanism has the following features.

  • A signal may be connected to many slots.
  • A signal may also be connected to another signal.
  • Signal arguments may be any Python type.
  • A slot may be connected to many signals.
  • Connections may be direct (ie. synchronous) or queued (ie. asynchronous).
  • Connections may be made across threads.
  • Signals may be disconnected.

Unbound and Bound Signals¶

A signal (specifically an unbound signal) is an attribute of a class that is asub-class of QObject. When a signal is referenced as an attribute of aninstance of the class then PyQt automatically binds the instance to the signalin order to create a bound signal. This is the same mechanism that Pythonitself uses to create bound methods from class functions.

A bound signal has connect(), disconnect() and emit() methods thatimplement the associated functionality. It also has a signal attributethat is the signature of the signal that would be returned by Qt’s SIGNAL()macro.

A signal may be overloaded, ie. a signal with a particular name may supportmore than one signature. A signal may be indexed with a signature in order toselect the one required. A signature is a sequence of types. A type is eithera Python type object or a string that is the name of a C++ type.

If a signal is overloaded then it will have a default that will be used if noindex is given.

When a signal is emitted then any arguments are converted to C++ types ifpossible. If an argument doesn’t have a corresponding C++ type then it iswrapped in a special C++ type that allows it to be passed around Qt’s meta-typesystem while ensuring that its reference count is properly maintained.

Defining New Signals with pyqtSignal()

PyQt automatically defines signals for all Qt’s built-in signals. New signalscan be defined as class attributes using the pyqtSignal()factory.

PyQt4.QtCore.pyqtSignal(types[, name])

Create one or more overloaded unbound signals as a class attribute.

Parameters:
  • types – the types that define the C++ signature of the signal. Each type maybe a Python type object or a string that is the name of a C++ type.Alternatively each may be a sequence of type arguments. In this caseeach sequence defines the signature of a different signal overload.The first overload will be the default.
  • name – the name of the signal. If it is omitted then the name of the classattribute is used. This may only be given as a keyword argument.
Return type:

an unbound signal

The following example shows the definition of a number of new signals:

New signals should only be defined in sub-classes of QObject.

New signals defined in this way will be automatically added to the class’sQMetaObject. This means that they will appear in Qt Designer and can beintrospected using the QMetaObject API.

Overloaded signals should be used with care when an argument has a Python typethat has no corresponding C++ type. PyQt uses the same internal C++ class torepresent such objects and so it is possible to have overloaded signals withdifferent Python signatures that are implemented with identical C++ signatureswith unexpected results. The following is an example of this:

Connecting, Disconnecting and Emitting Signals¶

Signals are connected to slots using the connect() method of a boundsignal.

connect(slot[, type=PyQt4.QtCore.Qt.AutoConnection])

Connect a signal to a slot. An exception will be raised if the connectionfailed.

Parameters:
  • slot – the slot to connect to, either a Python callable or another boundsignal.
  • type – the type of the connection to make.

Signals are disconnected from slots using the disconnect() method of abound signal.

disconnect([slot])

Disconnect one or more slots from a signal. An exception will be raised ifthe slot is not connected to the signal or if the signal has no connectionsat all.

Parameters:slot – the optional slot to disconnect from, either a Python callable oranother bound signal. If it is omitted then all slots connected to thesignal are disconnected.

Signals are emitted from using the emit() method of a bound signal.

emit(*args)

Emit a signal.

Parameters:args – the optional sequence of arguments to pass to any connected slots.

The following code demonstrates the definition, connection and emit of asignal without arguments:

The following code demonstrates the connection of overloaded signals:

Connecting Signals Using Keyword Arguments¶

Pyqt Connect Signals And Slots Real Money

It is also possible to connect signals by passing a slot as a keyword argumentcorresponding to the name of the signal when creating an object, or using thepyqtConfigure() method of QObject. For example the following threefragments are equivalent:

The pyqtSlot() Decorator¶

Although PyQt allows any Python callable to be used as a slot when connectingsignals, it is sometimes necessary to explicitly mark a Python method as beinga Qt slot and to provide a C++ signature for it. PyQt provides thepyqtSlot() function decorator to do this.

PyQt4.QtCore.pyqtSlot(types[, name][, result])

Decorate a Python method to create a Qt slot.

Parameters:
  • types – the types that define the C++ signature of the slot. Each type may bea Python type object or a string that is the name of a C++ type.
  • name – the name of the slot that will be seen by C++. If omitted the name ofthe Python method being decorated will be used. This may only be givenas a keyword argument.
  • result – the type of the result and may be a Python type object or a string thatspecifies a C++ type. This may only be given as a keyword argument.

Connecting a signal to a decorated Python method also has the advantage ofreducing the amount of memory used and is slightly faster.

For example:

It is also possible to chain the decorators in order to define a Python methodseveral times with different signatures. For example:

Connecting Slots By Name¶

PyQt supports the QtCore.QMetaObject.connectSlotsByName() function thatis most commonly used by pyuic4 generated Python code toautomatically connect signals to slots that conform to a simple namingconvention. However, where a class has overloaded Qt signals (ie. with thesame name but with different arguments) PyQt needs additional information inorder to automatically connect the correct signal.

For example the QtGui.QSpinBox class has the following signals:

When the value of the spin box changes both of these signals will be emitted.If you have implemented a slot called on_spinbox_valueChanged (whichassumes that you have given the QSpinBox instance the name spinbox)then it will be connected to both variations of the signal. Therefore, whenthe user changes the value, your slot will be called twice - once with aninteger argument, and once with a unicode or QString argument.

This also happens with signals that take optional arguments. Qt implementsthis using multiple signals. For example, QtGui.QAbstractButton has thefollowing signal:

Qt implements this as the following:

Deposit

The pyqtSlot() decorator can be used to specify which ofthe signals should be connected to the slot.

For example, if you were only interested in the integer variant of the signalthen your slot definition would look like the following:

Pyqt Connect Signal To Multiple Slots

If you wanted to handle both variants of the signal, but with different Pythonmethods, then your slot definitions might look like the following:

The following shows an example using a button when you are not interested inthe optional argument:

Mixing New-style and Old-style Connections¶

The implementation of new-style connections is slightly different to theimplementation of old-style connections. An application can freely use bothstyles subject to the restriction that any individual new-style connectionshould only be disconnected using the new style. Similarly any individualold-style connection should only be disconnected using the old style.

You should also be aware that pyuic4 generates code that usesold-style connections.

While working on ape I had a problem with figuring out how to properly connect a signal to a slot, where the signal is emitted by a QTreeView widget. As this is not my first app with python and pyqt, I was doing something like (this is, btw, the “old style”):

but it simply didn’t work. Nothing happened. I was trying all different of connect/signal/slot combinations but everything was just dead silent. Google gave only pretty much old posts talking about QT3. Then I figured that, because the QTreeView is “sitting” inside a QDockWidget, maybe that dock widget thingy is somehow intercepting/taking over the signals. Nope. Wth? Wtf is going on? Current pyqt version is (on my machine) 4.6. Last time I used pyqt it was something like 4.2 or 4.3. Something must’ve been changed in the mean time. Off to the pyqt docs I go (btw, I use the official QT docs, the C++ version, there isn’t really a big difference from pyqt): PyQt reference, chapter 7 - 'New-style Signal and Slot Support'. A-ha! They changed it! Here is an example of the “new style”:

Pyqt Connect Signals And Slots Games

Oh my, isn’t that just beautiful?! Much more readable and simpler, for me at least. And it works! Yay! The QTreeView signals are happily connected to slots, thus, I’m happy too.

Pyqt Connect Signals And Slots Vegas World

A few paragraphs later, turns out that the “old style” isn’t thrown out, it should still work. Why it didn’t work for me escapes me at the moment, but honestly, I don’t really care as long as the new style is working.

Pyqt Connect Signals And Slots No Deposit

Happy hackin’!